Rabu, 30 Oktober 2013

My top moments of 2013 — so far

Paul Leroux
Yes, I know, 2013 isn’t over yet. But it’s been such a milestone year for our automotive business that I can’t wait another two months to talk about it. And besides, you’ll be busy as an elf at the end of December, visiting family and friends, skiing the Rockies, or buying exercise equipment to compensate for all those holiday carbs. Which means if I wait, you’ll never get to read this. So let’s get started.


We unveil a totally new (and totally cool) technology concept car
Times Square. We were there.
It all began at 2013 CES, when we took the wraps off the latest QNX technology concept car — a one-of-a-kind Bentley Continental GT. The QNX concept team outfitted the Bentley with an array of technologies, including a high-definition DLP display, a 3D rear-view camera, cloud-based voice recognition, smartphone connectivity, and… oh heck, just read the blog post to get the full skinny.

Even if you weren’t at CES, you could still see the car in action. Brian Cooley of CNET, Michael Guillory of Texas Instruments, the folks at Elektrobit, and Discovery Canada’s Daily Planet were just some of the individuals and organizations who posted videos. You could also connect to the car through a nifty web app. Heck, you could even see the Bentley’s dash on the big screen in Times Square, thanks to the promotional efforts of Elektrobit, who also created the 3D navigation software for the concept car.

We ship the platform
We wanted to drive into CES with all cylinders firing, so we also released version 2.0 of the QNX CAR Platform for Infotainment. In fact, several customers in the U.S., Germany, Japan, and China had already started to use the platform, through participation in an early access program. Which brings me to the next milestone...

Delphi boards the platform
The first of many.
Also at CES, Delphi, a global automotive supplier and long-time QNX customer, announced that version 2.0 of the QNX CAR Platform will form the basis of its next-generation infotainment systems. As it turned out, this was just one of several QNX CAR customer announcements in 2013 — but I’m getting ahead of myself.

We have the good fortune to be featured in Fortune
Fast forward to April, when Fortune magazine took a look at how QNX Software Systems evolved from its roots in the early 1980s to become a major automotive player. Bad news: you need a subscription to read the article on the Fortune website. Good news: you can read the same article for free on CNN Money. ;-)

A music platform sets the tone for our platform
In April, 7digital, a digital music provider, announced that it will integrate its 23+ million track catalogue with the QNX CAR Platform. It didn't take long for several other partners to announce their platform support. These include Renesas (R-Car system-on-chip for high-performance infotainment), AutoNavi (mobile navigation technology for the Chinese market), Kotei (navigation engine for the Japanese market), and Digia (Qt application framework).

We stay focused on distraction
Back in early 2011, Scott Pennock of QNX was selected to chair an ITU-T focus group on driver distraction. The group’s objective was serious and its work was complex, but its ultimate goal was simple: to help reduce collisions. This year, the group wrapped up its work and published several reports — but really, this is only the beginning of QNX and ITU-T efforts in this area.

We help develop a new standard
Goodbye fragmentation; hello
standard APIs.
Industry fragmentation sucks. It means everyone is busy reinventing the wheel when they could be inventing something new instead. So I was delighted to see my colleague Andy Gryc become co-chair of the W3C Automotive and Web Platform Business Group, which has the mandate to accelerate the adoption of web technologies in the car. Currently, the group is working to draft a standard set of JavaScript APIs for accessing vehicle data information. Fragmentation, thy days are numbered.

We launch an auto safety program
A two-handed approach to
helping ADAS developers.
On the one hand, we have a 30-year history in safety-critical systems and proven competency in safety certifications. On the other hand, we have deep experience in automotive software design. So why not join both hands together and allow auto companies to leverage our full expertise when they are building digital instrument clusters, advanced driver assistance systems (ADAS), and other in-car systems with safety requirements?

That’s the question we asked ourselves, and the answer was the new QNX Automotive Safety Program for ISO 26262. The program quickly drew support from several industry players, including Elektrobit, Freescale, NVIDIA, and Texas Instruments.

We jive up the Jeep
A tasty mix of HTML5 & Android
apps, served on a Qt interface,
with OpenGL ES on the side.
If you don’t already know, we use a Jeep Wrangler as our reference vehicle — basically, a demo vehicle outfitted with a stock version of the QNX CAR Platform. This summer, we got to trick out the Jeep with a new, upcoming version of the platform, which adds support for Android apps and for user interfaces based on the Qt 5 framework.

Did I mention? The platform runs Android apps in a separate application container, much like it handles HTML5 apps. This sandboxed approach keeps the app environment cleanly partitioned from the UI, protecting both the UI and the overall system from unpredictable web content. Good, that.

The commonwealth’s leader honors our leader
I only ate one piece. Honest.
Okay, this one has nothing to do with automotive, but I couldn’t resist. Dan Dodge, our CEO and co-founder, received a Queen Elizabeth II Diamond Jubilee Medal in recognition of his many achievements and contributions to Canadian society. To celebrate, we gave Dan a surprise party, complete with the obligatory cake. (In case you’re wondering, the cake was yummy. But any rumors suggesting that I went back for a second, third, and fourth piece are total fabrications. Honestly, the stories people cook up.)

Mind you, Dan wasn’t the only one to garner praise. Sheridan Ethier, the manager of the QNX CAR development team, was also honored — not by the queen, but by the Ottawa Business Journal for his technical achievements, business leadership, and community involvement.

Chevy MyLink drives home with first prize — twice
There's nothing better than going home with first prize. Except, perhaps, doing it twice. In January, the QNX-based Chevy MyLink system earned a Best of CES 2013 Award, in the car tech category. And in May, it pulled another coup: first place in the "Automotive, LBS, Navigation & Safe Driving" category of the 2013 CTIA Emerging Technology (E-Tech) Awards.

Panasonic, Garmin, and Foryou get with the platform
Garmin K2 platform: because
one great platform deserves
another.
August was crazy busy — and crazy good. Within the space of two weeks, three big names in the global auto industry revealed that they’re using the QNX CAR Platform for their next-gen systems. Up first was Panasonic, who will use the platform to build systems for automakers in North America, Europe, and Japan. Next was Foryou, who will create infotainment systems for automakers in China. And last was Garmin, who are using the platform in the new Garmin K2, the company’s infotainment solution for automotive OEMs.

And if all that wasn’t cool enough…

Mercedes-Benz showcases the platform
Did I mention I want one?
When Mercedes-Benz decides to wow the crowds at the Frankfurt Motor Show, it doesn’t settle for second best. Which is why, in my not so humble opinion, they chose the QNX CAR Platform for the oh-so-desirable Mercedes-Benz Concept S-Class Coupé.

Mind you, this isn’t the first time QNX and Mercedes-Benz have joined forces. In fact, the QNX auto team and Mercedes-Benz Research & Development North America have collaborated since the early 2000s. Moreover, QNX has supplied the OS for a variety of Mercedes infotainment systems. The infotainment system and digital cluster in the Concept S-Class Coupé are the latest — and arguably coolest — products of this long collaboration.

We create noise to eliminate noise
Taking a sound approach to
creating a quieter ride.
Confused yet? Don’t be. You see, it’s quite simple. Automakers today are using techniques like variable cylinder management, which cut fuel consumption (good), but also increase engine noise (bad). Until now, car companies have been using active noise control systems, which play “anti-noise” to cancel out the unwanted engine sounds. All fine and good, but these systems require dedicated hardware — and that makes them expensive. So we devised a software product, QNX Acoustics for Active Noise Control, that not only out-performs conventional solutions, but can run on the car’s existing audio or infotainment hardware. Goodbye dedicated hardware, hello cost savings.

And we flub our lines on occasion
Our HTML5 video series has given companies like Audi, OnStar, Gartner, TCS, and Pandora a public forum to discuss why HTML5 and other open standards are key to the future of the connected car. The videos are filled with erudite conversation, but every now and then, it becomes obvious that sounding smart in front of a camera is a little harder than it looks. So what did we do with the embarrassing bits? Create a blooper reel, of course.

Are these bloopers our greatest moments? Nope. Are they among the funniest? Oh yeah. :-)

Rabu, 23 Oktober 2013

Top 10 challenges facing the ADAS industry

Tina Jeffrey
It didn’t take long. Just months after the release of the ISO 26262 automotive functional safety standard in 2011, the auto industry began to grasp its importance and adopt it in a big way. Safety certification is gaining traction in the industry as automakers introduce advanced driver assistance systems (ADAS), digital instrument clusters, heads-up displays, and other new technologies in their vehicles.

Governments around the world, in particular those of the United States and the European Union, are calling for the standardization of ADAS features. Meanwhile, consumers are demonstrating a readiness to adopt these systems to make their driving experience safer. In fact, vehicle safety rating systems are becoming a vital ‘go to’ information resource for new car buyers. Take, for example, the European New Car Assessment Programme Advanced (Euro NCAP Advanced). This organization publishes safety ratings on cars that employ technologies with scientifically proven safety benefits for drivers. The emergence of these ratings encourages automakers to exceed minimum statutory requirements for new cars.

Sizing the ADAS market
ABI Research claims that the global ADAS market, estimated at US$16.6 billion at the end of 2012, will grow to more than US$260 billion by the end of 2020, representing a CAGR of 41%. Which means that cars will ship with more of the following types of safety-certified systems:



The 10 challenges
So what are the challenges that ADAS suppliers face when bringing systems to market? Here, in my opinion, are the top 10:
  1. Safety must be embedded in the culture of every organization in the supply chain. ADAS suppliers can't treat safety as an afterthought that is tacked on at the end of development; rather, they must embed it into their development practices, processes, and corporate culture. To comply with ISO 26262, an ADAS supplier must establish procedures associated with safety standards, such as design guidelines, coding standards and reviews, and impact analysis procedures. It must also implement processes to assure accountability and traceability for decisions. These processes provide appropriate checks and balances and allow for safety and quality issues to be addressed as early as possible in the development cycle.
     
  2. ADAS systems are a collaborative effort. Most ADAS systems must integrate intellectual properties from a number of technology partners; they are too complex to be developed in isolation by a single supplier. Also, in a safety-certified ADAS system, every component must be certified — from the underlying hardware (be it a multi-core processor, GPU, FPGA, or DSP) to the OS, middleware, algorithms, and application code. As for the application code, it must be certified to the appropriate automotive safety integrity level; the level for the ADAS applications listed above is typically ASIL D, the highest level of ISO 26262 certification.
     
  3. Systems may need to comply with multiple industry guidelines or specifications. Besides ISO 26262, ADAS systems may need to comply with additional criteria, as dictated by the tier one supplier or automaker. On the software side, these criteria may include AUTOSAR or MISRA. On the hardware side, they will include AEC-Q100 qualification, which involves reliability testing of auto-grade ICs at various temperature grades. ICs must function reliably over temperature ranges that span -40 degrees C to 150 degrees C, depending on the system.
     
  4. ADAS development costs are high. These systems are expensive to build. To achieve economies of scale, they must be targeted at mid- and low-end vehicle segments. Prices will then decline as volume grows and development costs are amortized, enabling more widespread adoption.
     
  5. The industry lacks interoperability specifications for radar, laser, and video data in the car network. For audio-video data alone, automakers use multiple data communication standards, including MOST (media-oriented system transport), Ethernet AVB, and LVDS. As such, systems must support a multitude of interfaces to ensure adoption across a broad spectrum of possible interfaces. Also, systems may need additional interfaces to support radar or lidar data.
     
  6. The industry lacks standards for embedded vision-processing algorithms. Ask 5 different developers to develop a lane departure warning system and you’ll get 5 different solutions. Each solution will likely start with a Matlab implementation that is ported to run on the selected hardware. If the developer is fortunate, the silicon will support image processing primitives (a library of functions designed for use with the hardware) to accelerate development. TI, for instance, has a set of image and video processing libraries (IMGLIB and VLIB) optimized for their silicon. These libraries serve as building blocks for embedded vision processing applications. For instance, IMGLIB has edge detection functions that could be used in a lane departure warning application.
     
  7. Data acquisition and data processing for vision-based systems is high-bandwidth and computationally intensive. Vision-based ADAS systems present their own set of technical challenges. Different systems require different image sensors operating at different resolutions, frame rates, and lighting conditions. A system that performs high-speed forward-facing driver assistance functions such as road sign detection, lane departure warning, and autonomous emergency breaking must support a higher frame rate and resolution than a rear-view camera that performs obstacle detection. (A rear-view camera typically operates at low speeds, and obstacles in the field of view are in close proximity to the vehicle.) Compared to the rear-view camera, an LDW, AEB, or RSD system must acquire and process more incoming data at a faster incoming frame rate, before signaling the driver of an unintentional lane drift or warning the driver that the vehicle is exceeding the posted speed limit.
     
  8. ADAS cannot add to driver distraction. There is an increase in the complexity of in-vehicle tasks and displays that can result in driver information overload. Systems are becoming more integrated and are presenting more data to the driver. Information overload could result in high cognitive workload, reducing situational awareness and countering the efficacy of ADAS. Systems must therefore be easy to use and should make use of the most appropriate modalities (visual, manual, tactile, sound, haptic, etc.) and be designed to encourage driver adoption. Development teams must establish a clear specification of the driver-vehicle interface early on in development to ensure user and system requirements are aligned.
     
  9. Environmental factors affect ADAS. ADAS systems must function under a variety of weather and lighting conditions. Ideally, vision-based systems should be smart enough to understand when they are operating in poor visibility scenarios such as heavy fog or snow, or when direct sunlight shines into the lens. If the system detects that the lens is occluded or that the lighting conditions are unfavorable, it can disable itself and warn the driver that it is non-operational. Another example is an ultrasonic parking sensor that becomes prone to false positives when encrusted with mud. Combining the results of different sensors or different sensor technologies (sensor fusion) can often provide a more effective solution than using a single technology in isolation.
     
  10. Testing and validating is an enormous undertaking. Arguably, testing and validation is the most challenging aspect of ADAS development, especially when it comes to vision systems. Prior to deploying a commercial vision system, an ADAS development team must amass hundreds if not thousands of hours of video clips in a regression test database, in an effort to test all scenarios. The ultimate goal is to achieve 100% accuracy and zero false positives under all possible conditions: traffic, weather, number of obstacles or pedestrians in the scene, etc. But how can the team be sure that the test database comprises all test cases? The reality is that they cannot — which is why suppliers spend years testing and validating systems, and performing extensive real-world field-trials in various geographies, prior to commercial deployment.
     
There are many hurdles to bringing ADAS to mainstream vehicles, but clearly, they are surmountable. ADAS systems are commercially available today, consumer demand is high, and the path towards widespread adoption is paved. If consumer acceptance of ADAS provides any indication of societal acceptance of autonomous drive, we’re well on our way.

Kamis, 10 Oktober 2013

Squeezing into a tight spot

Paul Leroux
No doubt about it, autonomous and semi-autonomous cars will present a variety of legal and ethical challenges. But they'll also offer many benefits — some of which will be pleasantly surprising.

Take parking, for example. Cars are getting wider, but parking spaces generally aren't. So how do you squeeze into a tight spot and then step out of your car without slamming your door into the car next to you? Well, what if you didn't have to be in the car? This new video from Ford tells all...



This technology is cool, especially for aging drivers who can't crane their necks as well as they used to. Still, some gotchas come to mind. For instance, other drivers might get peeved if you momentarily leave your car on the road so you can park it remotely. Also, what if you squeeze your car into a tight parking spot just inches away from driver's door of the adjacent car — but that car doesn't support remote-controlled parking? How will the driver get back into his or her vehicle?

That said, these problems can be avoided with a little common sense on the part of the user. And I'll bet you dimes to donuts that this new technology from Ford can negotiate parking spaces more adroitly than most motorists. Which means that, eventually, we'll all have vehicles with fewer bumps, scuffs, and scratches. I could live with that.

Selasa, 08 Oktober 2013

A sound approach to creating a quieter ride

Tina Jeffrey
Add sound to reduce noise levels inside the car. Yup, you read that right. And while it may seem counterintuitive, it’s precisely what automakers are doing to provide a better in-car experience. Let’s be clear: I’m not talking about playing a video of SpongeBob SquarePants on the rear-seat entertainment system to keep noisy kids quiet — although I can personally attest to the effectiveness of this method. Rather, I’m referring to deliberately synthesized sound played over a vehicle’s car speakers to cancel unwanted low-frequency engine tones in the passenger compartment, yielding a quieter and more pleasant ride.

So why is this even needed? It comes down to fuel economy. Automakers are continually looking at ways to reduce fuel consumption through techniques such as variable cylinder management (reducing the number of cylinders in operation under light engine load) and operating the engine at lower RPM. Some automakers are even cutting back on passive damping materials to decrease vehicle weight. These approaches do indeed reduce consumption, but they also result in more engine noise permeating the vehicle cabin, creating a noisier ride for occupants. To address the problem, noise vibration and harshness engineers (OEM engineers responsible for characterizing and improving sound quality in vehicles) are using innovative sound technologies such as active noise control (ANC).

Automotive ANC technology is analogous to the technology used in noise-cancelling headphones but is more difficult to implement, as developers must optimize the system based on the unique acoustic characteristics of the cabin interior. An ANC system must be able to function alongside a variety of other audio processing tasks such as audio playback, voice recognition, and hands-free communication.


The QNX Acoustics for Active Noise Control solution uses realtime engine data and sampled microphone data from the cabin to construct the “anti-noise” signal played over the car speakers.

So how does ANC work?
According to the principle of superposition, sound waves will travel and reflect off glass, the dash, and other surfaces inside the car; interfere with each other; and yield a resultant wave of greater or lower amplitude to the original wave. The result varies according to where in the passenger compartment the signal is measured. At some locations, the waves will “add” (constructive interference); at other locations, the waves will “subtract” or cancel each other (destructive interference). Systems must be tuned and calibrated to ensure optimal performance at driver and passenger listening positions (aka “sweet spots”).

To reduce offending low-frequency engine tones (typically <150 Hz), an ANC system typically requires real-time engine data (including RPM) in addition to signals from the cabin microphones. The ANC system then synthesizes and emits “anti-noise” signals that are directly proportional but inverted to the original offending engine tones, via the car’s speakers. The net effect is a reduction of the offending tones.


According to the superposition principle of sound waves, a noise signal and an anti-noise signal will cancel each other if the signals are 180 degrees out of phase. Image adapted from Wikipedia.

Achieving optimal performance for these in-vehicle systems is complex, and here’s why. First off, there are multiple sources of sound inside a car — some desirable and some not. These include the infotainment system, conversation between vehicle occupants, the engine, road, wind, and structural vibrations from air intake valves or the exhaust. Also, every car interior has unique acoustic characteristics. The location and position of seats; the position, number, and type of speakers and microphones; and the materials used inside the cabin all play a role in how an ANC system performs.

To be truly effective, an ANC solution must adapt quickly to changes in vehicle cabin acoustics that result from changes in acceleration and deceleration, windows opening and closing, changes in passenger seat positions, and temperature changes. The solution must also be robust; it shouldn’t become unstable or degrade the audio quality inside the cabin should, for example, a microphone stop working.

The solution for every vehicle model must be calibrated and tuned to achieve optimal performance. Besides the vehicle model, engine noise characteristics, and number and arrangement of speakers and microphones, the embedded platform being used also plays a role when tuning the system. System tuning can, with conventional solutions, take months to reach optimal performance levels. Consequently, solutions that ease and accelerate the tuning process, and that integrate seamlessly into a customer’s application, are highly desirable.

Automotive ANC solutions — then and now
Most existing ANC systems for engine noise require a dedicated hardware control module. But automakers are beginning to realize that it’s more cost effective to integrate ANC into existing vehicle hardware systems, such as the infotainment head unit. This level of integration facilitates cooperation between different audio processing tasks, such as managing a hands-free call and reducing noise in the cabin.

Earlier today, QNX announced the availability of a brand new software product that targets ANC for engine tone reduction in passenger vehicles. It’s a flexible, software-based solution that can be ported to floating or fixed-point DSPs or application processors, including ARM, SHARC, and x86, and it supports systems with or without an OS. A host application that executes on the vehicle’s head unit or audio amplifier manages ANC through the library’s API calls. As a result, the host application can fully integrate ANC functionality with its other audio tasks and control the entire acoustic processing chain.

Eliminating BOM costs
The upshot is that the QNX ANC solution can match or supersede the performance of a dedicated hardware module — and we have the benchmarks to show it. Let me leave you with some of the highlights of the QNX Acoustics for Active Noise Control solution:

  • Significantly better performance than dedicated hardware solutions — The QNX solution can provide up to 9dB of reduction at the driver’s head position compared to 5dB for a comparative hardware solution in the same vehicle under the same conditions.
     
  • Significant BOM cost savings — Eliminates the cost of a dedicated hardware module.
     
  • Flexible and configurable — Can be integrated into the application processor or DSP of an existing infotainment system or audio amplifier, and can run on systems with or without an OS, giving automakers implementation choices. Also supports up to 6 microphone and 6 speaker-channel configurations.
     
  • Faster time to market — Speeds development by shortening tuning efforts from many months to weeks. Also, a specialized team of QNX acoustic engineers can provide software support, consulting, calibration, and system tuning.

For the full skinny on QNX Acoustics for Active Noise Control, visit the QNX website.